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NEURAL OPERATORS
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Functions map data, Operators map functions

e Function: R% — R4z

e.g., image classification: .; — 5

e Operator: function (co-dim) +— function ( co-dim)
e.g., derivative (local): x(t) — 2'(t)
e.g., integral (global): z(t) — [ K(s,t)z(s)ds

e.g., dynamic system: (%) W%y(t)
e.g., biological system
e.g., social system




Deep Operator Network (DeepONet)

= Some resemblance to a human neuron
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Problem Setup
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Gw)(Y) = Xy bitk

* Inputs: u at sensors {x;, X, ..., Xy }, ¥

* Outputs: G(w)(y)

*  GW)(y): afunction of y conditioning on u
* t(y): basis functions of y
* by (u): u-dependent coefficient




Suppose that o is a continuous non-polynomial function, X is a Banach
space, K, CX, K; C RY are two compact sets in X and RY, respectively,
. V is a compact set in C(K,), G is a nonlinear continuous operator,

U Nniversa I which maps V into C(K,). Then for any € >0, there are positive integers
n, p and m, constants Cf‘, ek 9,, Cr ER, wy € R? X €Kiy i= Lyuunyti,

O<3 Theorem 1 (Universal Approximation Theorem for Operator).

l]’

AppfOleation k=1,....pandj=1,...,m, such that
Theorem for

p n
Operator W) - 33 o Z@u@)w alm -y + )| <

k=1 i=1 ] 1
\ > trunk

VT

branch

(1)

holds for all u € V and y € K,. Here, C(K) is the Banach space of all con-
tinuous functions defined on K with norm || f|| -k, = maxeek|f(x)|.




H
Generalized

Universal
Approximation

Theorem for
Operator

Theorem 2 (Generalized Universal Approximation Theorem
for Operator). Suppose that X is a Banach space, K,c X, K» C R?
are two compact sets in X and RY, respectively, V is a compact set in
C(K,). Assume that G:V — C(K,) is a nonlinear continuous opera-
tor. Then, for any >0, there exist positive integers m, p, continuous
vector functions g : R™ — R, f: R? - R?, and x,, x,, ..., x,, €K,
such that

G)0) — (gl u(x), - u(m), £)) < ¢

"
branch trunk

holds for all u€V and y €K,, where (-,-) denotes the dot product in
R?. Furthermore, the functions g and f can be chosen as diverse classes
of neural networks, which satisfy the classical universal approxima-
tion theorem of functions, for example, (stacked/unstacked) fully con-
nected neural networks, residual neural networks and convolutional
neural networks.



Sketch of Proof

Continuously extend G(u)(y),y € K2 to G(u)(y),y € D.

™m,T

G(u) ~ G(I° ,u) (piecewise constant interpolation)

~ Z/ G(Z,, ;u)er(y)dy ex(y), (K2 C D,spectral expansion)
P
zZ/ Igy(g(l'gl_wu)(y))ek(y)dyek(y) (interpolation)

=Y (0@ 0w [ eluxn,dneny)

B i
k
G

e G (I,?Lu) (¥:) is continuous in u,, on [-M, M]™, M = maxi<i<m |u (x:)]-

e As G :V — C(D) is continuous, we have uniform approximation

g (If:zu) (yi) — .‘]JV (um; (—)(k'i)> ‘ <€

sup sup
ueV u,, €[—M,M]™

o er(y) = N (y;6)

B. Deng, Y. Shin, L. Lu, Z. Zhang, & G. E. Karniadakis. Convergence rate of DeepONets for learning operators arising from
advection-diffusion equations. arXiv preprint arXiv:2102.10621, 2021.
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I Error Estimates

For all the explicit and implicit operators in our examples, the operators G are Holder continuous.
IGU) —G@lx <Clf—gly, 0<a<l

Here C' > 0 depends on f and g and the operator G. Here X and Y are Banach spaces and they
refer to the space of continuous functions on a compact set unless otherwise stated.

Let Gy be the approximated G using DeepONet. Let fj, be an approximation of f in Y, possibly
by collocation or neural networks. Then

IG(f) = Gu(fllx < IG(f) = G(fa)llx + I1G(fn) — Gu(fu)llx < CIIf = fully +e,

where ¢ is the user-defined accuracy as in the universal approximation theorem by neural networks
and thus the key is to verify the operator G is Holder continuous.
The explicit operators and their Lipschitz continuity (o = 1) are presented below.

1. (Simple ODE, Problem 1.A) G(u)(z) = so + [ u(s)ds.
G -G <b —v.
Irg[%?;]l (u)(z) - Gv)(x)| < B lu—v|
2. (Caputo derivative, Problem 2) The operator is Lipschitz continuous with respect to its
argument in weighted Sobolev norms; see e.g. [14, Theorem 2.4].

3. (Integral fractional Laplacian, Problem 3) The operator is Lipschitz continuous with respect
to its argument in weighted Sobolev norms, see e.g. [6, Theorem 3.3].

4. (Legendre transform Problem 7 in Equation (S1)). The Lipschitz continuity of the operator
G(u)(n) = f_ P, (z)u(z) dz can be seen as follows. For any non-egative integer,

max |G(u)(n) — |<max/ z)| dz max |u—v|<C max |u — v|
n xz€[-1,1 z€[-1,1]

where C' = max, (f—ll dz) l/z(fjl |Pn(.';v)|2 dz)1/2 = maxﬂ?ﬁ)lﬂ <2.

5. The linear operator from Problem 9 in (S2) in Lipschitz continuous with respect to the
initial condition in the norm in the space of continuous functions, from he classical theory for
linear parabolic equations [9, Chapter IV],

The implicit operator from Problem 6. The operator can be written as u = G(b) and u; =
G(b;), i = 1,2 satisfying the following equations:

—div(e®®Vuy,) = f(z), zeD=(0,1), wui(z)=0, z¢cdD,

Then |Ju;j(w)||;1 < (mingep e )71 ||f||g-1, where H! and H™! are standard Sobolev-Hilbert

spaces. The difference u; — uo satisfies the following
—div(e" @V (u; — ug)) = div((e”® — 2®\Vuy), € D, ur—up =0, z€0dD.
Then by the stability of the elliptic equation , we have

s (@) — wa (@)l < (mine@) | (eh )T,

zeD L2
bl(.’lj) =, ” b] b2
= mine € — u| g
(zelD ) 4y C(D) “ 2” !

A

(min " ®)) 71 (min ¢*2@))~1 “ebl — e
zeD zeD

o Il
Then by the mean value theorem, |e* —e¥| < |z — y| (¢® + €¥) holds for all z,y € R. Thus,
€| ) 181 = E2llcoy 1711+

According to [3, Proposition 2.3], all the random variables mingep €(®))~1 and ||e%

[[ur (w) — u2(w)||Hé & (ImréiBebl(Z))_l(géiBebQ(Z))_l(Hebl i

i =1,2
C(D) b 1 b
have any moments of finite order. Then, we obtain the pathwise Lipschitz continuity of the operator

G
[1G(b1)(w) = G(b2) (W)l g2 < C(W) 11 = b2l -

Here C(w) = (mingep 6b1(z)) 1(m1n €D €b2(z) ||e ”C(D) + ”eb2||c(p)) ||f||H—1'



Experiment Results: ds1 ds»
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Test/generalization error:
« Small dataset: exponential convergence
» Large dataset: polynomial rates
* Smaller network has earlier transition point



s(x,0)

Experiment Results:
Advection Equation
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O * DeepONet

* 16 ODEs/PDEs (nonlinear, fractional & stochastic) (Lu et al.,
Nature Mach Intell, 2021)

* Bubble growth dynamics (Lin, et al., J Chem Phys, 2021, Lin,
et al., J Fluid Mech, 2021)

* Linear instability waves in high-speed boundary layers (Di
Leoni, et al., arXiv:2105.08697)

DeepONets for

learning operator + DeepM&Mnet

* Electroconvection (Cai, et al., J Comput Phys, 2021)
* Hypersonics (Mao, et al., J Comput Phys, 2021)

» Extensions of DeepONet, e.g., POD-DeepONet, MIO-Net,
PI-DeepONet, V-DeepONet...




Fourier Neural Operator
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Fourier layer

Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895. 2020 Oct 18.




Structure of FNO

Step 1: Function value v(z) is lifted to a higher dimensional representation zo(x) by
Z()(;I,‘) — P(’ly(‘«n)) € Rd=

Transformation P : R — R% is a shallow fully-connected NN or simply a linear layer. d. is
like the channel size in CNN.

Step 2: L Fourier layers are applied iteratively to zy. zp is the output of the last Fourier layer, and

the dimension of zy (x) is d..

Step 3: Transformation Q : R% — R is applied to project zz(z) to the output by

(Q is parameterized by a fully-connected NN.

Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895. 2020 Oct 18.



I Fourier Layer using FFT

For the output of the (th Fourier layer z; with d, channels:

Step 1: Compute the transform by FFT F and inverse FFT F—!:
F YR - F(2))

F is applied to each channel of z; separately Truncate the higher modes of F(z;), keeping only the first k
Fourier modes in each channel.|So F(z;) has the shape d, X k.

Step 2: Apply a different (complex-number) weight matrix of shape d, x d, for each mode index of F(z;) Have k

trainable matrices, which form a weight tensor R; € C%*d*k | ;. F(z) has the same shape of d, x k as F(z;).

Step 3: Inverse FFT Need tolappend zeros to R; - F(z;) to fill in the truncated modes.
Moreover, in each Fourier layer, a residual connection with a weight matrix W; € R%*4v_ The output of the
(I + 1)th Fourier layer 241 is|zi41 =0 (F " (R - F (1)) + Wi -z + by)

Li Z, Kovachki N, Azizzadenesheli K, Liu B, Bhattacharya K, Stuart A, Anandkumar A. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895. 2020 Oct 18.



DeepONet and FNO

Consider the Burgers’ equation w; + uu, = Kug, with periodic boundary condition u(z — 7,t) =
(z 4 m,t),z € R. Then, by the Cole-Hopf transformation,

Then u(z,t) is a rational function in V,, := (Vo, Vy,--- ,V,,,_])T. By [Telgarsky 2017], there exists el (Vi 0y4) of
size O (711,2 In (f")) for fixed z,t s.t.
sup | gV (V,,,,;G_,._,)) — G (up) |< Ce (z,8) =: G (uo) = —2K - fR 0. K(x,y,t)vo(y)dy
ug€S u\zr, it up) = IC ¢ d
Sem v+ [ollze < Mo, [8u0]l,.. < M} fR (z,y,t)vo(y)dy
={v:||v||pe £ Mo, ||02v]| o < M
Loc =2 [, K(@, 5, uo(y)dy
o gV (Vi 6, ,)) an be further approximated by a ReLU network - fR K(z,y,t) (Zmvo) (y)dy
o ¢V (ugm:;0,,) with input ug,, (initial values). _ Vocy + Vict + -+ - + Vin—16h, 4
= 2 2 . 2
® !IA (1, m;©4.t) can be viewed as FNO. Voeg + Vier +  Vin-16n-1
R where K is the heat kernel, Z,, is the Fourier interpolation operator and
asia ug (1
. Vo—lV—exp( Z/ OJk))J':L...’m_l

b 9 (Wo,m; Oz, 1) Li, where xy 's are Fourier collocation points and Lg(z)’s are the Lagrange basis

c}(w,t) e —2&1-/0 (Z 0. K(x,y + 27rl,t)> Lj(y)dy
1

Conclusion
e Take e =m~! (accuracy), the size of FNO is O (m®In(m)) while the size of DeepONet is O (m? In(m)) (branch)
+O(m) (trunk).
cjz(x, t) = /0 Z K(z,y+2nl,t) | Lj(y)dy
J

e In general, we connect FNO F* N(v) and DeepONet by
m

G*)(e) = 3 P 0) () Lu(o)

Conclusion
e Take e = m™! (accuracy), the size of FNO is O (m®In(m)) while the size of DeepONet is O (m® In(m)) (branch)

+0O(m) (trunk).



Applications of Neural Operators

DeepONet for Approximating Functionals: Predicting unsteady

pressure and lift/drag-force coefficients

* Simulation of NACA0012 airfoil (Nektar by Z. Wang)
apm  sin(2fnt) + 1.0) =157

inflow T —— u = Uco COS( 180 = 92 5: O.i
o apm  sin(2fnt) + 1.0 © =
0 (2/m) ), Re =2500

v = U sin( TR 5

* Generate time-dependent AOA * Time-dependent coefficients
of drag, lift, pressure

I—Anglc of ‘-\ttackl
420 430 440 450 460 470 480
t




Applications of Neural Operators
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Applications of Neural Operators

DeepONet for Approximating Functionals: Predicting unsteady
pressure and lift/drag-force coefficients

* Predicting drag/lift coefficient
* Cut the time-dependent signal into pieces, to generate a bunch of input-output pairs

’ Traini'n ' ' Testm T ‘ l/«\( —\ D4 .
1! g e g 1 3o\ N/ \ Output function
o MWW LA iy
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Applications of Neural Operators

DeepONet for Bubble Dynamics

e Rayleigh-Plesset equation is an ordinary differential equation which governs the dynamics of a spherical bubble in an
infinite body of imcomporessible fluid
* For nanobubbles, the thermal fluctuation cannot be ignored, and trainning data are generated by particle simulation

Length 1 l/’R" |
)
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Applications of Neural Operators

DeepONet for Bubble Dynamics
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